Самое опасное при пожаре — токсичные продукты горения и обрушение зданий. Металлические конструкции — колонны, поперечные несущие балки, распорки, — быстро нагреваются, доходят до своего предела огнестойкости, утрачивают несущую способность, и просто «складываются». Стальные профили, в зависимости от толщины, при критической температуре — +500°C, сохраняют прочность от 3-х до 25 минут, огнестойкость алюминия ниже — +300°C. Деревянные конструкции дольше сохраняют целостность, но быстро воспламеняются, ускоряя распространение огня, выделяют много дыма и токсичных продуктов.
- не выделяют при горении ядовитые вещества;
- не утяжеляют конструкции и не изменяют их конфигурацию;
- могут использоваться для труднодоступных объектов сложной формы;
- нанесение на защищаемые объекты требует меньших трудозатрат и легко поддается механизации;
- сохраняют огнезащитную способность на срок 5—10 лет, с возможностью последующей реставрации.
Области применения вспучивающихся красок
Терморасширяющиеся краски применяются для защиты практически всех объектов и элементов зданий и сооружений: конструкций из бетона и железобетона, металла, дерева, оборудования, кровли, электропроводки и кабелей, воздуховодов, систем кондиционирования, путей аварийной эвакуации. Все они изготовлены из разнообразных материалов, которые по-разному ведут себя при возгораниях.Противопожарные лакокрасочные покрытия, в зависимости от состава и назначения, могут использоваться внутри помещений, на открытом воздухе, при повышенной влажности, при сильных морозах и в условиях резких перепадов температур, в атмосфере коррозионно-активных газов и солевых туманов, в агрессивных средах (нефтепродукты, минеральные масла, бензин), в жёстких климатических условиях.
За рубежом интумесцентные покрытия составляют почти половину из применяемых средств противопожарной профилактики. В России вспучивающиеся лаки и краски используются меньше — их доля до 7—10%, но это направление быстро развивается.
Как работают огнезащитные краски при пожаре
При нагревании в огнезащитных составах происходят сложные физико-химические процессы. Из слоя толщиной 1-3 мм образуется пористая оболочка высотой до 20—100 мм, которая герметизирует поверхность защищаемого объекта, отсекая ее от контакта с огнем и кислородом воздуха.С ростом температуры пена науглероживается и превращается в кокс с высокой механической прочностью и хорошей поверхностной адгезией. За счёт низкой теплопроводности пористые коксовые остатки огнезащитных красок снижают теплопередачу в сотни раз (коэффициенты теплопроводности пенококсов, железобетона и стали соответственно 0,033—0,038, 1,7 и 52 Вт/м*К), предотвращают дымообразование и выход продуктов распада наружу, продлевают время до начала воспламенения. При температурах 800—950 °С такая термоизоляция может работать от 30 до 180 мин.
Чем объёмнее, прочнее образующийся коксовый слой и выше его термостойкость, тем медленнее будет нагреваться защищаемый объект. Терморасширяющаяся краска может минимизировать ущерб при своевременном тушении пожара — обугленная пена не спекается с поверхностями и её можно просто соскрести с оборудования и стен.
Особенности составов
Терморасширяющиеся, или интумесцентные покрытия сложны по составу и разнообразны по свойствам. Точные рецептуры производители красок обычно не раскрывают — коммерческая тайна. Как и традиционные лакокрасочные материалы, они содержат пленкообразователи, наполнители, загустители, пеногасители, диспергаторы.Специфические огнезащитные свойства лакокрасочных материалов обеспечивает комплекс из трёх типов ингредиентов:
- Соединения, разлагающиеся с образованием газов — порофоры (порообразователи).
- «Агенты карбонизации» — многоатомные спирты, — способствующие тому, что при высоких температурах краски не сгорают, а образуют прочный остаток.
- Фосфоросодержащие соединения. Они выполняют несколько функций: катализируют образование кокса, повышают его адгезию, прочность и термостабильность, подавляют тление и образование дыма.
Для повышения выхода кокса, улучшения его теплофизических свойств, в рецептуру красок вводят инертные минеральные наполнители. Чаще это — диоксид титана, реже используются оксид кремния, слюда, каолин, тальк.
Противопожарные краски — высоконаполненные системы, — они содержат меньше пленкообразователей, чем декоративные. От связующих зависит долговечность сохранения защитных функций и фактическая эффективность покрытий при пожаре: скорость формирования пены, её толщина и адгезия к подложке, теплофизические свойства кокса.
Чем выше огнестойкость кокса, тем при более высоких температурах он начнет выгорать, тлеть и отслаиваться под действием турбуленции и вибраций, сопровождающих пожары.
Лакокрасочные огнезащитные покрытия изготавливаются на основе органических и неорганических связующих. Неорганические пленкообразователи — преимущественно жидкое стекло, органические — акрилонитриловые, стирол-акриловые, поливинилацетатные полимеры, хлорвиниловые олигомеры, эпоксидные и кремнийорганические смолы.
Преимущества и недостатки огнезащитных красок с разными типами связующих
Терморасширяющиеся лакокрасочные материалы бывают безрастворные (на основе смол или олигомеров), водорастворимые и растворяющиеся в органических разбавителях или растворителях (уайт-спирите, сольвенте, толуоле, ксилоле, бутилацетате).Водорастворимые составы нетоксичны, технологичны и образуют покрытия с огнестойкостью до 120—150 мин. Они эффективны при пожарах, протекающих по «целлюлозному типу», а при пожарах «углеродного типа», со стремительным нарастанием температуры, не успевают превратиться в защитный слой и разрушаются.
Водорастворимые огнезащитные краски подходят для использования внутри помещений — при пониженных температурах и высокой влажности они склонны к охрупчиванию и отслоениям, их развитая микропористость приводит к постепенному вымыванию вспенивающих добавок.
Защитные покрытия на органических растворителях более эффективны при пожарах углеродного типа, способны долго прослужить при любой погоде и влажности, не вызывают коррозию металлических поверхностей.
Наиболее высокие эксплуатационные характеристики отличают терморасширяющиеся краски на основе эпоксидных составов. Они хорошо работают при углеродном типе горения и устойчивы к сложным климатическим условиям (рабочие температуры — от −60 до +60 °С), повышенной влажности, воздействию агрессивных сред, долговечны. Массовое применение эпоксидных пожарозащитных составов ограничивают их высокая стоимость и относительно сложная технология нанесения.
На российском рынке представлено огромное многообразие огнезащитных красок авторитетных иностранных производителей, но постепенно увеличивается доля отечественных составов высокого качества. Это и продукция специального назначения: краски по металлу, краски для деревянных конструкций, для воздуховодов, а линейки универсальных составов.
Особенности технологии окраски
Технология нанесения огнезащитных красок принципиально не отличается от окрашивания обычными лакокрасочными материалами. Повышенные требования предъявляются к подготовке защищаемых поверхностей: очистке от грязи и пыли, ржавчины, обезжириванию, сушке.Толщина огнезащитных лакокрасочных покрытий (0,5—3 см) «набирается» послойно, в несколько этапов окрашивания (от 1 до 7). В зависимости от требуемой толщины покрытия, расход краски на 1 м2 может составлять от 1,2 до 3,5 кг, без учета технологических потерь (от 5 до 20%).
На качество и долговечность огнезащитных лакокрасочных покрытий влияет множество факторов: соблюдение технологии окраски (регламентированная толщина каждого из слоев, время сушки, атмосферные условия окрашивания), условия хранения, транспортировки, эксплуатации.
Любые нарушения могут привести к тому, что фактическая огнезащитная способность покрытия окажется меньше, чем указано в сертификате или будет утрачена полностью: оно может отслоиться, не вспучится при пожаре, термоизолирующий кокс разрушится быстрее, чем нужно.
Нанесение огнезащитных лаков и красок допускается осуществлять вручную — кистью, валиком, с помощью окрасочного пистолета, краскопульта, или с использованием специализированного оборудования: агрегатов для безвоздушного или воздушного распыления типа «Vagner», «Финиш», Mark.